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Abstract: In relation to the total synthesis of the furaquinocins, stereoselective methylenation of 
chiral aldehyde 5 is described. The diastereoselectivity of epoxides 6s/6b is high when stabilized 
sulfur ylides are employed. A double stereo-differentiation phenomenon was observed for the 
aminosulfoxonium ylide 8: the selectivity with (S)-8 was 30:1, while 5: l with (R)-8. 
© 1997 Elsevier Science Ltd. 

The furaquinocins are the Streptomyces  metabolites isolated by Omura, which show cytocidal activity 

against HeLa $3 cells.1 In spite of their rather small molecular architecture, these compounds pose several 

synthetic issues that include the stereocontrol of three contiguous stereogenic centers with a quaternary one. 

We found a clue to solve this problem in our recent synthesis of furaquinocin D (eq. 1): 2 Dimethyl- 

oxosulfonium methylide (3) reacts with aldehyde 1 to give the epoxide 2 with the desired stereochemistry in 

high selectivity (2a:2b = 13:1). A relevant reaction furnished an important additional detail to this 

gratifying outcome: the selectivity diminished to a 1.5:1 level when a more reactive ylide, 

dimethylsulfonium methylide (4), was employed. Such a stereochemical contrast as shown by these two 

ylides is reminiscent of the famous example of their reaction with 4-t-butylcyclohexanone, which appears in 

many textbooks: Oxirane I is available by the irreversible axial attack of sulfonium ylide 4 followed by 

elimination, whereas reversible attack of the oxosulfonium ylide 3 accumulates the equatorially coupled 

betaine that leads to isomer II. 3 

In an effort to gain insight for further improving the stereoselectivity, we studied this methylenation 

reaction in detail, which is the subject of this communication. 
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t Dedicated to the memory of the late Professor Masaru Yamaguchi. 
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Optically active aldehyde 5, 4 related to 1 (vide supra), was chosen as the model substrate for the present 

study, and the reactions with various methylene transfer agents were examined (Table 1). 5 Even though 

aldehyde 5 differs from 1 in the protecting groups, the two sulfur ylides show exactly the same 

stereochemical contrast (runs 1 and 2): Oxosulfonium ylide 3 led to the predominant formation of 6a, 

arising formally from the ylide attack on the re-face of $ (run 1). On the other hand, the sulfonium ylide 4 

led only to 1.5:1 selectivity (run 2). The selectivity by the sulfonium ylide remained poor even when a 

more sterically demanding one 76 was employed (run 3). 

Table 1. Stereoselectivity of methylene transfer to 5. 

MeO" ~l  ~ ~ "OMEM MeO" ~ " ~  "OMEM MeO" " i f  ~ "OMEM 
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S h 6b 

run a ylide b reaction period yield/% 6a/6b c 

1 CH2-~(CH3)2 e+ 2 h 65 13/1 
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4 

4- 
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- I k  
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13/1 
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30/1 e 

a: Carried out in DMSO at room temperature, b: Generated in situ from the 
corresponding onium salts with Nail. c: Determined by weighing the isolated 
isomers 6a and 61). d: THF was used as the solvent, e: Determined by HPLC (see 
ref. 14). 
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The kinetic facial selectivity of the nucleophilic attack to aldehyde $ seems intrinsically poor as 

suggested by the reaction shown in eq. 2, which we assume is irreversible. 3d,7 A mixture of diastereomers 

9a and 9b s resulted in 1:1.5 selectivity, which were correlated to the epoxides 6a and 6b, respectively. 9 

Thus, the si-face of the aldehyde 5 is attacked preferentially, albeit slightly, which is opposite to the outcome 

of runs 1-3 in Table 1. Apparently, the high selectivity (run 1) is not related to the kinetic facial selectivity. 

MIO 
5 

• " OH ." OH 

LiCH2SPhDABCO ~ ~ S P h  4. ~ S P h  

THF, 0*C MeO" '1" v -OMEM MeO" ~ v -OMEM 
MeO MId) 

90% 9a 91) 

(2) 

Scheme 1 illustrates our current view of the process. Given the reversibility of the carbonyl addition of 

stabilized sulfur ylides, 3 we assume that the equilibration of A and B is more rapid than the collapse of 

betaines A and B. If such a Curtin-Hammett system applies, 1° the large ratio 6a/6b is given by ka[A]/kb[B], 

which could result from either the somehow large ratio of the betaine populations ([A]/[B]) or that of the 

kinetic parameters (ka/kb) or both of these, although the origin cannot be specified. 11 

Scheme 1 
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Such a dynamic equilibration of A and B for the case of the oxosulfonium ylide is reasonable if we 

consider the pKa values of the parent salts (see above), 3c which led us to examine an even more stabilized 

ylide, N,N-dimethylaminosulfoxonium ylide by Johnson. 12 It turned out that the ylide 8 reacted with 

aldehyde 5 slowly but cleanly (run 4), leading to a high selectivity comparable to run 1. Furthermore, we 

were intrigued to observe a double stereo-differentiation 13 with the antipodal aminosulfoxonium ylides. 12b 

While the reaction of (R)-8 was sluggish resulting in poor selectivity (run 5), (S)-8 reacted smoothly, thereby 

leading to an excellent selectivity (run 6). 14,15 This significant ligand effect on the sulfur atom stands in 

contrast to the case of the reactive ylides (runs 2 and 3). 
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In conclusion, a highly stereoselective access is now available to epoxide 6a, which would serve as a 

versatile intermediate in the synthesis of the furaquinocins. Further study along these lines is now in 

progress. 
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